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SMOOTH PARTITIONS OF ANOSOV 
DIFFEOMORPHISMS ARE WEAK BERNOULLI  

BY 

RUFUS BOWEN* 

ABSTRACT 

It is shown that smooth partitions are weak Bernoulli for C 2 measure 
preserving Anosov diffeomorphisms. A related type of coding is defined and 
an invariant discussed. 

We prove here the conjecture  of Benjamin Weiss [9] that smooth partitions 

of Anosov diffeomorphisms are weak Bernoulli. A strong type of coding will be 

used for this purpose. 

Let  T be an automorphism of the probability space (X, m). For  ~ and 

(finite) partitions of X one writes ~ 1 ~  if 

Im(P V~ Q ) -  m(P)m(Q)I < & 

A partition M is weak Bernoulli for T if for every  e > 0 there is an L = L(e)  so 

that 

o L + n  

V T-JM_I_ V T-iM for all n_->0. 
j = - n  e j = L  

This property originated as a way to prove Bernoulliness [4] and is now seen as 

a strong statement about certain partitions for Bernoulli shifts [11]. 

LEMMA 1. If ~-ks~ and ~ C ~ ,  then ~ 1~+2~. 

PROOF. Let  ~ = { R , , . - - , R k } ,  ~ ' = { R ; , - . . , R ~ , } ,  where ~ ' C ~  and 

E,m(RtAR'~) < e. 
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Ira(R, n Q ) -  m(R, )m(Q) l  

<-_ lm(R, O Q ) -  m(R ' , n  Q)[ + Im(R ' ,n  Q ) -  m(R',)m(Q)] 

+ Im(R '¢)m(Q)-  m(R,)m(Q)]  

<- m((R, AR'3 N Q) + I m(R'~ N Q) - m(R'i)m(Q)] + m(Q)m(RiAR ' ) .  

Now ~ '  ± ~  because ~ '  C ~. Summing the above inequality over  i and Q E ~, 

we get 

Ira(R, n Q ) -  m(R, )m(Q) l  <-_ e + a + e. 
i ,Q 

LEMMA 2. I f  ~ ± ~ ,  ~ C . ~  and 5e C ~ ,  then ~ ±~÷4~S¢. 

Israel J. Math., 

DEFINITION Let  ~ ,  ~ be two partitions of X. We say ~ is boundedly coded 

by ~ w.r.t. T if, for  every e > 0 ,  there is a K = K(e )  with 

n n + K  

V T-J~  C V T-J~  for all n. 
j=0  e i = - K  

PROPOSITION. 3. If  ~ is boundedly coded by ~ and ~ is weak Bernoulli, then 

is also weak Bernoulli. 

PROOF. 

j = - n  • j = - n - - K  j = L  

Since ~ is weak Bernoulli, for  large L one has 

K L + n + K  

V T-J~ ± V T - ~ .  
j = - n - K  e j = L - K  

By Lemma 2 one then has 

0 L + n  

V T-J~_I. V T - ~  for all n_-_0, 
j = - n  5e i = L  

i.e. ~/ is weak Bernoulli. 

We will call a finite partition of a manifold M smooth if the boundary of each 

set in the partition is a compact  piecewise smooth differentiable submanifold. 

Fix e > 0 and choose K as above. Let  L be large. We have 

0 K L + n  L + n + K  

V T - i ~  C V T - i ~  and V T-JM C V T-J~. 
E i = L - K  

PROOF. By Lemma 1 one has ~ 18+2~. Then, applying Lemma 1 to S¢ C ,~ ,  

one gets ~ _1_~÷4~5 ¢. 
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THEOREM 4. Suppose T: M ---> M is a C 2 Anosov  dif feomorphism preserving 

a smooth invariant measure m. Then every smooth partition o f  M is weak 

Bernoulli for  T. 

PROOF. Let  M be the partition and O,M be the set of points within e of the 

boundary of some member of M. The smoothness condition gives us a constant 

c so that 
m ( 8 ~ l )  <-_ ce. 

Because T is Anosov (see [2]), there are positive constants a, b, A with 

A ~ (0, l) so that 

diam E _<- bA" whenever  E C M satisfies 

diam TSE <= a for all j E [ -  r, r]. 

Let  ~ be any partition of M whose sets have diameter  less than a. 

Consider a set E @ V "+KI=-K T-i~.  For  k ~ [0, n] one has diam TJ(T~E) <= a 

for all I J[ ~ K + min{k, n - k}; hence diam TkE <= bA K÷r~intk'"-k~. Either T~E is 

totally contained within a single member of M, or TkE C c~b~ . . . .  ~ ..... ~M. The 

totality of all E E V ~'_-+_rK T - i ~  for which TkE hits more than one member  of M 

have total measure at most cbA r+~i,~k.,-~; the totality of all E ' s  for  which this 

happens for some k E [0, n] have measure at most 

cbA K + m i n { k . n - k }  ~ 2cb ~ A K ÷' = oA K, 
k = 0  j = 0  

where a = 2 c b ( 1 -  A)-'. Any other E lies inside a single atom of Y~=o T-EM; 

hence one has 
n + K  

~/ T-~M C~, K V T-i~:d. 
k = 0  i = - - K  

We have shown that M is boundedly coded by any small partition ~.  The 

theory of Markov partitions [7] gives us partitions ~ of arbitrarily small 

diameter which are weak Bernoulli [3]. (Warning: "Ma rk o v "  partitions are not 

always Markov in the probabilistic sense.) By Proposition 3, M is weak 

Bernoulli. 

REMARK 5. For  partitions ~, ~ let 

Set 

/3(~' ,~)  = ~ t m ( P N Q ) - m ( P ) m ( Q ) [ .  
PE~,QE~ 

yN(~)  = sup /3 T-S~3, T-J~  . 
n-->O " = - -  j = N  



98 R. BOWEN Israel J. Math., 

In the above  proof  one gets that, for K < N[2 ,  

yN( ,~)  <-4a,~ K + yN 2K(~). 

Somet imes  a weak Bernoulli partition ~ (i.e. ~/N(~)--~O as N-- ,oo)  will 

sat isfy the stronger condition 

(* )  There  are positive constants  u, v 

so that T N ( ~ )  <= ue -°~' for all N => 0. 

Taking K = IN/4],  one sees that M satisfies (* )  if ~ does. The Markov  

partition partition ~ in fact  does satisfy (* )  [8], [6]. 

We will write M - bd ~ if the two partitions M and ~ boundedly code each 

other. Then -bd. is an equivalence relation and one can look for invariants to 

distinguish -bd.-equivalence classes of partitions. For  any finite partition 

one defines I~ : X ~ R by 

Ie , (x )=  ~ ( - I n  m ( P ) ) x p .  
P E ~  

Let  

I~, n, r = IvT-6r-J~ 

and define the distribution function F~,n,r on R by 

F~., ,r(r)  = m { x  E X :  n-~(I~. , ,r(X) -- n h ( T ,  ~t)) < r}. 

PROPOSmON 6. S u p p o s e  that  F~,, .r---~F in dis tr ibut ion as n - - - ~ .  I f  

~¢ ~ ha. ~ ,  then also F~,,.r ~ F in distr ibut ion.  

PROOF. If  ~d ~ bd ~ ,  then ~d and ~ generate  the same o--algebras under T 

and h ( T , ~ d ) =  h ( T , ~ ) .  Given e > 0 ,  the fact  

n n + K ( e )  

V T - ~  C V T - J ~  
j = 0  e - K ( e )  

implies that (1 - I x / e )  % of the a toms of v~"÷~(')_K(,) T - ~  have at least (1 - X / e ) %  

Vj=o T ~ .  This yields of  their mass  lying in a single a tom of " -~ 

F~,, ,r(r)  <= x / e  + F~.,+2K(~),r(r - n-'/21n(l - X/e)). 

If  L ( e )  satifies 

n + L ( e )  

T - J ~  C V T . - ~  for  all n=>0,  
j = 0  ~ - L ( e )  

one gets analogously 

F~..,r(r) =< X/e + F~..÷2L(~).T (r - n-'/21n(1 - X/e)). 
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The proposition follows from the two inequalities when n--* oo. 

For a Bernoulli partition ~ and n => 0, let X , ( x )  = I~(T"x) .  Then Xo, X, , .  • • 

is an independent sequence of random variables with the same distribution, 

and 

n--I 

I °T=EX, 
j - O  

EXj = h(T,  sg). 

By the central limit theorem F~.,.T converges in distribution to F~ which is the 

centered normal law with the same variance as I~. By Proposition 6, Bernoulli 

partitions with probabilities (], ], ], I) and (½, ~, ], s ~, ~) cannot boundedly code each 

other (in fact neither can boundedly code the other one by a slightly finer 

argument). On the other band, the Meshalkin code [10] codes these partitions 

finitistically [9]. 

For another example we look at ergodic automorphisms of the 2-torus [1]. 

These are Anosov diffeomorphisms and here the Markov partitions are 

themselves smooth partitions. Adler and Weiss have constructed bounded 

codings between Markov partitions ~ for any two of these examples with the 

same entropy; hence any two small smooth partitions of two such examples 

boundedly code each other. 

For Anosov automorphisms of the n-torus the situation is more complicated. 

Here the Markov partitions ~ [7] probably are not smooth, though they might 

still satisfy the condition m(cLY3)<=ce *. Thus it is unknown whether ~ is 

boundedly coded by small smooth partitions. It is also unknown here whether 

Markov partitions for different Anosov automorphisms with the same entropy 

boundedly code each other. Doug Lind suggested to us one thing that can be 

proven: an Anosov automorphism of the n-torus cannot have a smooth 

partition ~¢ which is a Bernoulli generator. If such an ~¢ existed, then 

h(T,  sg) = h(T,  ~ )  = h ( T )  and, since ~ boundedly codes ~¢, one would have 

lim F~,,.~ <= lira F~,.,T, 
n n 

provided these distribution limits exist (see the proof of 8). There are constants 

k,, k2 so that ([7], [1, p. 13]) 

I~...r - n log h E [k,, k2], 

* A d d e d  in p roo f :  M. Ratner has shown that m(O~)  =< ce for Anosov automorphisms of the 
n - t o r u s .  
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where h ( T ) = l o g A .  Hence  lim.F~,..r concentrates all mass at the origin. 

Because M is Bernoulli, lim. F~,.,r is normal or concentrates all mass at the 

origin. Since lim. F~,.,T =< lim. F~...T, I~ must in fact have variance 0; i.e., ~¢ has 

probabilities ( I / k , - . - ,  l[k) for some integer k > 1 and A = k. Lind pointed out 

that this cannot happen. Otherwise, let A , , . . . ,  A. be the eigenvalues of the 

matrix representing T. Then the A~ are algebraic integers and hence so is 

1/k = -+ 7rp~,r<, A~. But a rational algebraic integer is an integer and k > 1. 

N o w  let T: M ~ M be a general C 2 Anosov  diffeomorphism preserving the 

smooth measure m. For ~ a Markov partition lim F~..,T will exist, again being 

normal or point mass [5]. One would have ~1 - ~  ~ for ~¢ a small smooth 

partit ion/f  one could get m ( 0 ~ )  <= ce. Then lim. F~...r would equal lim. F~,..r. I 

suspect this in fact is the case and that lim. F~..,r is a point mass iff the entropy 

hm(T) equals the topological entropy of T. 
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